
Python: Advanced ConceptsThis section covers several advanced concepts in Python, including decorators,getters and setters, static and class methods, magic methods, exception handling,map/filter/reduce, the walrus operator, and *args/**kwargs.Decorators in PythonIntroductionDecorators in Python are a powerful and expressive feature that allows you tomodify or enhance functions and methods in a clean and readable way. Theyprovide a way to wrap additional functionality around an existing function withoutpermanently modifying it. This is often referred to as metaprogramming, where onepart of the program tries to modify another part of the program at compile time.Decorators use Python’s higher-order function capability, meaning functions canaccept other functions as arguments and return new functions.Understanding DecoratorsA decorator is simply a callable (usually a function) that takes another function asan argument and returns a replacement function. The replacement functiontypically extends or alters the behavior of the original function.Basic Example of a Decoratordef my_decorator(func):def wrapper():print("Something is happening before the function is called.") func()print("Something is happening after the function is called.")return wrapper

Output:Here, @my_decorator is syntactic sugar for say_hello =my_decorator(say_hello) . It modifies the behavior of say_hello() by wrappingit inside wrapper() . The wrapper function adds behavior before and after theoriginal function call.Using Decorators with ArgumentsDecorators themselves can also accept arguments. This requires another level ofnesting: an outer function that takes the decorator’s arguments and returns theactual decorator function.@my_decoratordef say_hello():print("Hello!")say_hello()Something is happening before the function is called.Hello!Something is happening after the function is called.def repeat(n):def decorator(func):def wrapper(a):for _ in range(n): func(a)return wrapperreturn decorator@repeat(3)def greet(name):print(f"Hello, {name}!")

Output:In this example, repeat(3) returns the decorator function. The @ syntax thenapplies that returned decorator to greet . The argument in the wrapper functionensures that the decorator can be used with functions that take any number ofpositional and keyword arguments.Chaining Multiple DecoratorsYou can apply multiple decorators to a single function. Decorators are applied frombottom to top (or, equivalently, from the innermost to the outermost).greet("world")Hello, world!Hello, world!Hello, world!def uppercase(func):def wrapper():return func().upper()return wrapperdef exclaim(func):def wrapper():return func() + "!!!"return wrapper@uppercase@exclaimdef greet():return "hello"print(greet())

Output:Here, greet is first decorated by exclaim , and then the result of that isdecorated by uppercase . It’s equivalent to greet = uppercase(exclaim(greet)) .RecapDecorators are a key feature in Python that enable code reusability and cleanerfunction modifications. They are commonly used for:Logging: Recording when a function is called and its arguments.Timing: Measuring how long a function takes to execute.Authentication and Authorization: Checking if a user has permission to accessa function.Caching: Storing the results of a function call so that subsequent calls with thesame arguments can be returned quickly.Rate Limiting: Controlling how often a function can be called.Input Validation: Checking if the arguments to a function meet certain criteria.Instrumentation: Adding monitoring and profiling to functions.Frameworks like Flask and Django use decorators extensively for routing,authentication, and defining middleware.Getters and Setters in PythonIntroductionIn object-oriented programming, getters and setters are methods used to controlaccess to an object’s attributes (also known as properties or instance variables).They provide a way to encapsulate the internal representation of an object,allowing you to validate data, enforce constraints, and perform other operationswhen an attribute is accessed or modified. While Python doesn’t have privateHELLO!!!• • • • • • •

variables in the same way as languages like Java, the convention is to use a leadingunderscore (_) to indicate that an attribute is intended for internal use.Using getters and setters helps:Encapsulate data and enforce validation: You can check if the new valuemeets certain criteria before assigning it.Control access to “private” attributes: By convention, attributes starting withan underscore are considered private, and external code should use getters/setters instead of direct access.Make the code more maintainable: Changes to the internal representation ofan object don’t necessarily require changes to code that uses the object.Add additional logic: Logic can be added when getting or setting attributes.Using Getters and SettersTraditional Approach (Using Methods)A basic approach is to use explicit getter and setter methods:• • • • class Person:def __init__(self, name): self._name = name # Convention: underscore (_) denotes a private attribute.def get_name(self):return self._namedef set_name(self, new_name): self._name = new_name p = Person("Alice")print(p.get_name()) # Alicep.set_name("Bob")print(p.get_name()) # Bob

Using @property (Pythonic Approach)Python provides a more elegant and concise way to implement getters and settersusing the @property decorator. This allows you to access and modify attributesusing the usual dot notation (e.g., p.name) while still having the benefits of getterand setter methods.Benefits of @property :Attribute-like access: You can use obj.name instead of obj.get_name() and obj.set_name() , making the code cleaner and more readable.Consistent interface: The external interface of your class remains consistenteven if you later decide to add validation or other logic to the getter or setter.Read-only properties: You can create read-only properties by simply omittingthe @property.setter method (see the next section).@property.deleter : deletes a property. Here is an example:class Person:def __init__(self, name): self._name = name@propertydef name(self): # Getterreturn self._name@name.setterdef name(self, new_name): # Setter self._name = new_name p = Person("Alice")print(p.name) # Alice (calls the getter)p.name = "Bob" # Calls the setterprint(p.name) # Bob• • • •

Read-Only PropertiesIf you want an attribute to be read-only, define only the @property decorator (thegetter) and omit the @name.setter method. Attempting to set the attribute willthen raise an AttributeError .class Person:def __init__(self, name): self._name = name@propertydef name(self): # Getterreturn self._name@name.setterdef name(self, new_name): # Setter self._name = new_name @name.deleterdef name(self):del self._namep = Person("Alice")print(p.name) # Alicedel p.nameprint(p.name) # AttributeError: 'Person' object has no attribute '_name'class Circle:def __init__(self, radius): self._radius = radius@propertydef radius(self):return self._radius@property

RecapGetters and Setters provide controlled access to an object’s attributes,promoting encapsulation and data validation.The @property decorator offers a cleaner and more Pythonic way toimplement getters and setters, allowing attribute-like access.You can create read-only properties by defining only a getter (using @property without a corresponding @<attribute>.setter).Using @property , you can dynamically compute values (like the area in the Circle example) while maintaining an attribute-like syntax.Static and Class Methods in PythonIntroductionIn Python, methods within a class can be of three main types:Instance Methods: These are the most common type of method. They operateon instances of the class (objects) and have access to the instance’s datathrough the self parameter.Class Methods: These methods are bound to the class itself, not to anyparticular instance. They have access to class-level attributes and can be usedto modify the class state. They receive the class itself (conventionally named cls) as the first argument.def area(self): # Read-only computed propertyreturn 3.1416 * self._radius * self._radiusc = Circle(5)print(c.radius) # 5print(c.area) # 78.54# c.radius = 10 # Raises AttributeError: can't set attribute# c.area = 20 # Raises AttributeError: can't set attribute• • • • • •

Static Methods: These methods are associated with the class, but they don’thave access to either the instance (self) or the class (cls). They areessentially regular functions that are logically grouped within a class fororganizational purposes.Instance Methods (Default Behavior)Instance methods are the default type of method in Python classes. They requirean instance of the class to be called, and they automatically receive the instance asthe first argument (self).Class Methods (@classmethod)A class method is marked with the @classmethod decorator. It takes the class itself(cls) as its first parameter, rather than the instance (self). Class methods areoften used for:Modifying class attributes: They can change the state of the class, whichaffects all instances of the class.Factory methods: They can be used as alternative constructors to createinstances of the class in different ways.• class Dog:def __init__(self, name): self.name = name # Instance attributedef speak(self):return f"{self.name} says Woof!"dog = Dog("Buddy")print(dog.speak()) # Buddy says Woof!• • class Animal: species = "Mammal" # Class attribute

Example: Alternative ConstructorIn this example, from_string acts as a factory method, providing an alternativeway to create Person objects from a string.@classmethoddef set_species(cls, new_species): cls.species = new_species # Modifies class attribute@classmethoddef get_species(cls):return cls.speciesprint(Animal.get_species()) # MammalAnimal.set_species("Reptile")print(Animal.get_species()) # Reptile# You can also call class methods on instances, but it's less common:a = Animal()print(a.get_species()) # Reptileclass Person:def __init__(self, name, age): self.name = name self.age = age@classmethoddef from_string(cls, data): name, age = data.split("-")return cls(name, int(age)) # Creates a new Person instancep = Person.from_string("Alice-30")print(p.name, p.age) # Alice 30

Static Methods (@staticmethod)Static methods are marked with the @staticmethod decorator. They are similar toregular functions, except they are defined within the scope of a class.They don’t take self or cls as parameters.They are useful when a method is logically related to a class but doesn’t needto access or modify the instance or class state.Often used for utility functions that are related to the classWhen to Use Static Methods?When a method is logically related to a class but doesn’t require access toinstance-specific or class-specific data.For utility functions that perform operations related to the class’s purpose(e.g., mathematical calculations, string formatting, validation checks).Key Differences Between Method TypesMethodType Requiresself ? Requirescls ? Can AccessInstanceAttributes? Can ModifyClass Attributes?InstanceMethod ✅ Yes ❌ No ✅ Yes ✅ Yes(indirectly)• • • class MathUtils:@staticmethoddef add(a, b):return a + bprint(MathUtils.add(3, 5)) # 8#Can also be called on an instancem = MathUtils()print(m.add(4,5)) # 9• •

MethodType Requiresself ? Requirescls ? Can AccessInstanceAttributes? Can ModifyClass Attributes?ClassMethod ❌ No ✅ Yes ❌ No (directly) ✅ YesStaticMethod ❌ No ❌ No ❌ No ❌ NoRecapInstance methods are the most common type and operate on individualobjects (self).Class methods operate on the class itself (cls) and are often used for factorymethods or modifying class-level attributes.Static methods are utility functions within a class that don’t depend on theinstance or class state. They’re like regular functions that are logically groupedwith a class.Magic (Dunder) Methods in PythonIntroductionMagic methods, also called dunder (double underscore) methods, are specialmethods in Python that have double underscores at the beginning and end of theirnames (e.g., __init__ , __str__ , __add__). These methods allow you to definehow your objects interact with built-in Python operators, functions, and languageconstructs. They provide a way to implement operator overloading and customizethe behavior of your classes in a Pythonic way.They are used to:Customize object creation and initialization (__init__ , __new__).Enable operator overloading (e.g., + , - , * , == , < , >).• • • • •

Provide string representations of objects (__str__ , __repr__).Control attribute access (__getattr__ , __setattr__ , __delattr__).Make objects callable (__call__).Implement container-like behavior (__len__ , __getitem__ , __setitem__ , __delitem__ , __contains__).Support with context managers (__enter__ , __exit__)Common Magic Methods1. __init__ – Object InitializationThe __init__ method is the constructor. It’s called automatically when a newinstance of a class is created. It’s used to initialize the object’s attributes.2. __str__ and __repr__ – String Representation__str__ : This method should return a human-readable, informal stringrepresentation of the object. It’s used by the str() function and by print() .__repr__ : This method should return an unambiguous, official stringrepresentation of the object. Ideally, this string should be a valid Pythonexpression that could be used to recreate the object. It’s used by the repr()function and in the interactive interpreter when you just type the object’sname and press Enter.• • • • • class Person:def __init__(self, name, age): self.name = name self.age = agep = Person("Alice", 30)print(p.name, p.age) # Alice 30• •

If __str__ is not defined, Python will use __repr__ as a fallback for str() and print() . It’s good practice to define at least __repr__ for every class you create.3. __len__ – Define Behavior for len()This method allows objects of your class to work with the built-in len() function.It should return the “length” of the object (however you define that).class Person:def __init__(self, name, age): self.name = name self.age = agedef __str__(self):return f"Person({self.name}, {self.age})" # User-friendlydef __repr__(self):return f"Person(name='{self.name}', age={self.age})" # Unambiguous, for debuggingp = Person("Alice", 30)print(str(p)) # Person(Alice, 30)print(repr(p)) # Person(name='Alice', age=30)print(p) # Person(Alice, 30) # print() uses __str__ if availableclass Book:def __init__(self, title, pages): self.title = title self.pages = pagesdef __len__(self):return self.pagesb = Book("Python 101", 250)print(len(b)) # 250

4. __add__ , __sub__ , __mul__ , etc. – Operator OverloadingThese methods allow you to define how your objects behave with standardarithmetic and comparison operators.Other common operator overloading methods include:__eq__ (==)__ne__ (!=)__lt__ (<)__gt__ (>)__le__ (<=)class Vector:def __init__(self, x, y): self.x = x self.y = ydef __add__(self, other):return Vector(self.x + other.x, self.y + other.y)def __sub__(self, other):return Vector(self.x - other.x, self.y - other.y)def __mul__(self, scalar):return Vector(self.x * scalar, self.y * scalar)def __str__(self):return f"Vector({self.x}, {self.y})"v1 = Vector(2, 3)v2 = Vector(4, 5)v3 = v1 + v2 # Calls __add__print(v3) # Vector(6, 8)v4 = v3 - v1print(v4) # Vector(4, 5)v5 = v1 * 5print(v5) # Vector(10, 15)• • • • •

__ge__ (>=)__truediv__ (/)__floordiv__ (//)__mod__ (%)__pow__ (**)RecapMagic (dunder) methods are a powerful feature of Python that allows you to:Customize how your objects interact with built-in operators and functions.Make your code more intuitive and readable by using familiar Python syntax.Implement operator overloading, container-like behavior, and other advancedfeatures.Define string representation.Exception Handling and Custom Errors in PythonIntroductionExceptions are events that occur during the execution of a program that disruptthe normal flow of instructions. Python provides a robust mechanism for handlingexceptions using try-except blocks. This allows your program to gracefullyrecover from errors or unexpected situations, preventing crashes and providinginformative error messages. You can also define your own custom exceptions torepresent specific error conditions in your application.Basic Exception HandlingThe try-except block is the fundamental construct for handling exceptions:The try block contains the code that might raise an exception.• • • • • • • • • •

The except block contains the code that will be executed if a specificexception occurs within the try block.Output:Handling Multiple ExceptionsYou can handle multiple types of exceptions using multiple except blocks or byspecifying a tuple of exception types in a single except block.• try: x = 10 / 0 # This will raise a ZeroDivisionErrorexcept ZeroDivisionError:print("Cannot divide by zero!")Cannot divide by zero!try: num = int(input("Enter a number: ")) result = 10 / numexcept ZeroDivisionError:print("You can't divide by zero!")except ValueError:print("Invalid input! Please enter a number.")# Alternative using a tuple:try: num = int(input("Enter a number: ")) result = 10 / numexcept (ZeroDivisionError, ValueError) as e:print(f"An error occurred: {e}")

Using else and finallyelse : The else block is optional and is executed only if no exception occurswithin the try block. It’s useful for code that should run only when the tryblock succeeds.finally : The finally block is also optional and is always executed,regardless of whether an exception occurred or not. It’s typically used forcleanup operations, such as closing files or releasing resources.Raising Exceptions (raise)You can manually raise exceptions using the raise keyword. This is useful forsignaling error conditions in your own code.• • try:file = open("test.txt", "r") content = file.read()except FileNotFoundError:print("File not found!")else:print("File read successfully.")print(f"File contents:\n{content}")finally:file.close() # Ensures the file is closed no matter whatdef check_age(age):if age < 18:raise ValueError("Age must be 18 or older!")return "Access granted."try:print(check_age(20)) # Access granted.print(check_age(16)) # Raises ValueErrorexcept ValueError as e:print(f"Error: {e}")

Custom ExceptionsPython allows you to define your own custom exception classes by creating a newclass that inherits (directly or indirectly) from the built-in Exception class (or oneof its subclasses). This makes your error handling more specific and informative.By defining custom exceptions, you can:Create a hierarchy of exceptions that reflect the specific error conditions inyour application.Provide more informative error messages tailored to your application’s needs.Make it easier for other parts of your code (or other developers) to handlespecific errors appropriately.Conclusiontry-except blocks are essential for handling errors and preventing programcrashes.Multiple except blocks or a tuple of exception types can be used to handledifferent kinds of errors.class InvalidAgeError(Exception):"""Custom exception for invalid age."""def __init__(self, message="Age must be 18 or older!"): self.message = messagesuper().__init__(self.message)def verify_age(age):if age < 18:raise InvalidAgeError() # Raise your custom exceptionreturn "Welcome!"try:print(verify_age(16))except InvalidAgeError as e:print(f"Error: {e}")• • • • •

The else block executes only if no exception occurs in the try block.The finally block always executes, making it suitable for cleanup tasks.The raise keyword allows you to manually trigger exceptions.Custom exceptions (subclasses of Exception) provide a way to representapplication-specific errors and improve error handling clarity.Map, Filter, and ReduceIntroductionmap , filter , and reduce are higher-order functions in Python (and many otherprogramming languages) that operate on iterables (lists, tuples, etc.). They providea concise and functional way to perform common operations on sequences of datawithout using explicit loops. While they were more central to Python’s functionalprogramming style in earlier versions, list comprehensions and generatorexpressions often provide a more readable alternative in modern Python.MapThe map() function applies a given function to each item of an iterable andreturns an iterator that yields the results.Syntax: map(function, iterable, ...)function : The function to apply to each item.iterable : The iterable (e.g., list, tuple) whose items will be processed.... : map can take multiple iterables. The function must take the samenumber of arguments• • • • • • • numbers = [1, 2, 3, 4, 5]# Square each number using mapsquared_numbers = map(lambda x: x**2, numbers)print(list(squared_numbers)) # Output: [1, 4, 9, 16, 25]

FilterThe filter() function constructs an iterator from elements of an iterable forwhich a function returns True . In other words, it filters the iterable based on acondition.Syntax: filter(function, iterable)function : A function that returns True or False for each item. If None ispassed, it defaults to checking if the element is True (truthy value).iterable : The iterable to be filtered.#Example with multiple iterablesnumbers1 = [1, 2, 3]numbers2 = [4, 5, 6]summed = map(lambda x, y: x + y, numbers1, numbers2)print(list(summed)) # Output: [5, 7, 9]# Equivalent list comprehension:squared_numbers_lc = [x**2 for x in numbers]print(squared_numbers_lc) # Output: [1, 4, 9, 16, 25]• • numbers = [1, 2, 3, 4, 5, 6]# Get even numbers using filtereven_numbers = filter(lambda x: x % 2 == 0, numbers)print(list(even_numbers)) # Output: [2, 4, 6]# Equivalent list comprehension:even_numbers_lc = [x for x in numbers if x % 2 == 0]print(even_numbers_lc) # Output: [2, 4, 6]# Example with None as functionvalues = [0, 1, [], "hello", "", None, True, False]truthy_values = filter(None, values)print(list(truthy_values)) # Output: [1, 'hello', True]

ReduceThe reduce() function applies a function of two arguments cumulatively to theitems of an iterable, from left to right, so as to reduce the iterable to a single value. reduce is not a built-in function; it must be imported from the functoolsmodule.Syntax: reduce(function, iterable[, initializer])function : A function that takes two arguments.iterable : The iterable to be reduced.initializer (optional): If provided, it’s placed before the items of theiterable in the calculation and serves as a default when the iterable is empty.• • • from functools import reducenumbers = [1, 2, 3, 4, 5]# Calculate the sum of all numbers using reducesum_of_numbers = reduce(lambda x, y: x + y, numbers)print(sum_of_numbers) # Output: 15# Calculate the product of all numbers using reduceproduct_of_numbers = reduce(lambda x, y: x * y, numbers)print(product_of_numbers) # Output: 120#reduce with initializerempty_list_sum = reduce(lambda x,y: x+y, [], 0)print(empty_list_sum) # 0# Without the initializer:# empty_list_sum = reduce(lambda x,y: x+y, []) # raises TypeError# Equivalent using a loop (for sum):total = 0for x in numbers: total += xprint(total) # 15

When to use map, filter, reduce vs. list comprehensions/generator expressions:Readability: List comprehensions and generator expressions are often morereadable and easier to understand, especially for simple operations.Performance: In many cases, list comprehensions/generator expressions canbe slightly faster than map and filter .Complex Operations: reduce can be useful for more complex aggregationswhereComplex Operations: reduce can be useful for more complex aggregationswhere the logic is not easily expressed in a list comprehension. map and filter may also be preferable when you already have a named function thatyou want to apply.Functional Programming Style: If you’re working in a more functionalprogramming style, map , filter , and reduce can fit naturally into yourcode.Walrus Operator (:=)IntroductionThe walrus operator (:=), introduced in Python 3.8, is an assignment expressionoperator. It allows you to assign a value to a variable within an expression. This canmake your code more concise and, in some cases, more efficient by avoidingrepeated calculations or function calls. The name “walrus operator” comes from theoperator’s resemblance to the eyes and tusks of a walrus.Use CasesConditional Expressions: The most common use case is within ifstatements, while loops, and list comprehensions, where you need to bothtest a condition and use the value that was tested.• • • • • 1. # Without walrus operatordata = input("Enter a value (or 'quit' to exit): ")

In the “with walrus” example, the input is assigned to data and compared to“quit” in a single expression.List Comprehensions: You can avoid repeated calculations or function callswithin a list comprehension.Reading Files: You can read lines from a file and process them within a loop.while data != "quit":print(f"You entered: {data}") data = input("Enter a value (or 'quit' to exit): ")# With walrus operatorwhile (data := input("Enter a value (or 'quit' to exit): ")) != "quit":print(f"You entered: {data}")2. numbers = [1, 2, 3, 4, 5]# Without walrus operator: calculate x * 2 twiceresults = [x * 2 for x in numbers if x * 2 > 5]# With walrus operator: calculate x * 2 only onceresults = [y for x in numbers if (y := x * 2) > 5]3. # Without Walruswith open("my_file.txt", "r") as f: line = f.readline()while line:print(line.strip()) line = f.readline()# With Walruswith open("my_file.txt", "r") as f:while (line := f.readline()):print(line.strip())

ConsiderationsReadability: While the walrus operator can make code more concise, it canalso make it harder to read if overused. Use it judiciously where it improvesclarity.Scope: The variable assigned using := is scoped to the surrounding block(e.g., the if statement, while loop, or list comprehension).Precedence: The walrus operator has lower precedence than most otheroperators. Parentheses are often needed to ensure the expression is evaluatedas intended.Args and KwargsIntroduction*args and **kwargs are special syntaxes in Python function definitions thatallow you to pass a variable number of arguments to a function. They are usedwhen you don’t know in advance how many arguments a function might need toaccept.*args : Allows you to pass a variable number of positional arguments.**kwargs : Allows you to pass a variable number of keyword arguments.*args (Positional Arguments)*args collects any extra positional arguments passed to a function into a tuple.The name args is just a convention; you could use any valid variable namepreceded by a single asterisk (e.g., *values , *numbers).• • • • • def my_function(*args):print(type(args)) # <class 'tuple'>for arg in args:print(arg)my_function(1, 2, 3, "hello") # Output: 1 2 3 hello

In this example, *args collects all positional arguments passed to my_functioninto the args tuple.**kwargs (Keyword Arguments)**kwargs collects any extra keyword arguments passed to a function into a dictionary. Again, kwargs is the conventional name, but you could use any validvariable name preceded by two asterisks (e.g., **data , **options).In this example, **kwargs collects all keyword arguments into the kwargsdictionary.Combining *args and **kwargsYou can use both *args and **kwargs in the same function definition. The orderis important: *args must come before **kwargs . You can also include regularpositional and keyword parameters.my_function() # No output (empty tuple)my_function("a", "b") # Output: a bdef my_function(**kwargs):print(type(kwargs)) # <class 'dict'>for key, value in kwargs.items():print(f"{key}: {value}")my_function(name="Alice", age=30, city="New York")# Output:# name: Alice# age: 30# city: New Yorkmy_function() # No output (empty dictionary)my_function(a=1, b=2)# Output:# a: 1# b: 2

Use CasesFlexible Function Design: *args and **kwargs make your functions moreflexible, allowing them to handle a varying number of inputs without needingto define a specific number of parameters.Decorator Implementation: Decorators often use *args and **kwargs towrap functions that might have different signatures.Function Composition: You can use *args and **kwargs to pass argumentsthrough multiple layers of function calls.Inheritance: Subclasses can accept extra parameters to those defined byparent classes.def my_function(a, b, *args, c=10, **kwargs):print(f"a: {a}")print(f"b: {b}")print(f"args: {args}")print(f"c: {c}")print(f"kwargs: {kwargs}")my_function(1, 2, 3, 4, 5, c=20, name="Bob", country="USA")# Output:# a: 1# b: 2# args: (3, 4, 5)# c: 20# kwargs: {'name': 'Bob', 'country': 'USA'}my_function(1,2)# Output:# a: 1# b: 2# args: ()# c: 10# kwargs: {}• • • • # Example showing use in inheritanceclass Animal:

def __init__(self, name): self.name = nameclass Dog(Animal):def __init__(self, name, breed, *args, **kwargs):super().__init__(name) self.breed = breed# Process any additional arguments or keyword arguments hereprint(f"args: {args}")print(f"kwargs: {kwargs}")dog1 = Dog("Buddy", "Golden Retriever")dog2 = Dog("Lucy", "Labrador", 1,2,3, color="Black", age = 5)

	Python: Advanced Concepts
	Decorators in Python
	Introduction
	Understanding Decorators
	Basic Example of a Decorator
	Output:

	Using Decorators with Arguments
	Output:

	Chaining Multiple Decorators
	Output:
	Recap

	Getters and Setters in Python
	Introduction
	Using Getters and Setters
	Traditional Approach (Using Methods)
	Using @property (Pythonic Approach)

	Benefits of @property:
	Read-Only Properties
	Recap

	Static and Class Methods in Python
	Introduction
	Instance Methods (Default Behavior)
	Class Methods (@classmethod)
	Example: Alternative Constructor

	Static Methods (@staticmethod)
	When to Use Static Methods?

	Key Differences Between Method Types
	Recap

	Magic (Dunder) Methods in Python
	Introduction
	Common Magic Methods
	1. __init__ – Object Initialization
	2. __str__ and __repr__ – String Representation
	3. __len__ – Define Behavior for len()
	4. __add__, __sub__, __mul__, etc. – Operator Overloading

	Recap

	Exception Handling and Custom Errors in Python
	Introduction
	Basic Exception Handling
	Output:

	Handling Multiple Exceptions
	Using else and finally

	Raising Exceptions (raise)
	Custom Exceptions
	Conclusion

	Map, Filter, and Reduce
	Introduction
	Map
	Filter
	Reduce

	Walrus Operator (:=)
	Introduction
	Use Cases
	Considerations

	Args and Kwargs
	Introduction
	*args (Positional Arguments)
	**kwargs (Keyword Arguments)
	Combining *args and **kwargs
	Use Cases

