Python: Advanced Concepts

This section covers several advanced concepts in Python, including decorators,
getters and setters, static and class methods, magic methods, exception handling,

map/filter/reduce, the walrus operator, and *args/**kwargs.

Decorators in Python

Introduction

Decorators in Python are a powerful and expressive feature that allows you to
modify or enhance functions and methods in a clean and readable way. They
provide a way to wrap additional functionality around an existing function without
permanently modifying it. This is often referred to as metaprogramming, where one

part of the program tries to modify another part of the program at compile time.

Decorators use Python’s higher-order function capability, meaning functions can

accept other functions as arguments and return new functions.

Understanding Decorators

A decorator is simply a callable (usually a function) that takes another function as
an argument and returns a replacement function. The replacement function
typically extends or alters the behavior of the original function.

Basic Example of a Decorator

def my decorator(func):
def wrapper():
print("Something is happening before the function is call
func()
print("Something is happening after the function is calle

return wrapper

@my_decorator
def say hello():
print("Hello!")

say_hello()

Output:

Something is happening before the function is called.
Hello!
Something is happening after the function is called.

Here, @my_decorator is syntactic sugar for say_hello =
my_decorator(say_hello) . It modifies the behavior of say_hello() by wrapping
it inside wrapper() . The wrapper function adds behavior before and after the

original function call.

Using Decorators with Arguments

Decorators themselves can also accept arguments. This requires another level of
nesting: an outer function that takes the decorator’s arguments and returns the
actual decorator function.

def repeat(n):
def decorator(func):
def wrapper(a):
for _ in range(n):
func(a)
return wrapper
return decorator

@repeat(3)
def greet(name):
print(f"Hello, {name}!")

greet("world")

Output:

Hello, world!
Hello, world!
Hello, world!

In this example, repeat(3) returns the decorator function. The @ syntax then
applies that returned decorator to greet . The argument in the wrapper function

ensures that the decorator can be used with functions that take any number of
positional and keyword arguments.

Chaining Multiple Decorators

You can apply multiple decorators to a single function. Decorators are applied from
bottom to top (or, equivalently, from the innermost to the outermost).

def uppercase(func):
def wrapper():
return func().upper()
return wrapper

def exclaim(func):

def wrapper():
return func() + "!!1"

return wrapper

@uppercase

@exclaim

def greet():
return "hello"

print(greet())

Output:

HELLO!!!

Here, greet is first decorated by exclaim, and then the result of that is

decorated by uppercase . It's equivalent to greet = uppercase(exclaim(greet)) .

Recap

Decorators are a key feature in Python that enable code reusability and cleaner

function modifications. They are commonly used for:

* Logging: Recording when a function is called and its arguments.
« Timing: Measuring how long a function takes to execute.

« Authentication and Authorization: Checking if a user has permission to access

a function.

« Caching: Storing the results of a function call so that subsequent calls with the
same arguments can be returned quickly.

« Rate Limiting: Controlling how often a function can be called.
« Input Validation: Checking if the arguments to a function meet certain criteria.

* Instrumentation: Adding monitoring and profiling to functions.

Frameworks like Flask and Django use decorators extensively for routing,

authentication, and defining middleware.

Getters and Setters in Python

Introduction

In object-oriented programming, getters and setters are methods used to control
access to an object’s attributes (also known as properties or instance variables).
They provide a way to encapsulate the internal representation of an object,
allowing you to validate data, enforce constraints, and perform other operations
when an attribute is accessed or modified. While Python doesn’t have private

variables in the same way as languages like Java, the convention is to use a leading
underscore (_) to indicate that an attribute is intended for internal use.

Using getters and setters helps:

* Encapsulate data and enforce validation: You can check if the new value
meets certain criteria before assigning it.

« Control access to “private” attributes: By convention, attributes starting with
an underscore are considered private, and external code should use getters/
setters instead of direct access.

» Make the code more maintainable: Changes to the internal representation of
an object don't necessarily require changes to code that uses the object.

« Add additional logic: Logic can be added when getting or setting attributes.

Using Getters and Setters

Traditional Approach (Using Methods)

A basic approach is to use explicit getter and setter methods:

class Person:
def init (self, name):
self._name = name # Convention: underscore (_) denotes a

def get_name(self):
return self. name

def set name(self, new_name):
self. name = new_name

p = Person("Alice")
print(p.get_name()) # Alice
p.set_name("Bob")
print(p.get_name()) # Bob

Using @property (Pythonic Approach)

Python provides a more elegant and concise way to implement getters and setters
using the @property decorator. This allows you to access and modify attributes

using the usual dot notation (e.g., p.name) while still having the benefits of getter

and setter methods.

class Person:
def init (self, name):
self. name = name

@property
def name(self): # Getter
return self. name

@name.setter
def name(self, new_name): # Setter
self. name = new_nhame

p = Person("Alice")
print(p.name) # Alice (calls the getter)

p.name = "Bob" # Calls the setter
print(p.name) # Bob

Benefits of @property :

« Attribute-like access: You can use obj.name instead of obj.get name() and

obj.set_name() , making the code cleaner and more readable.

« Consistent interface: The external interface of your class remains consistent
even if you later decide to add validation or other logic to the getter or setter.

 Read-only properties: You can create read-only properties by simply omitting

the @property.setter method (see the next section).

« @property.deleter : deletes a property. Here is an example:

class Person:
def init (self, name):
self. name = name

@property
def name(self): # Getter
return self. name

@name.setter
def name(self, new_name): # Setter
self. name = new_name

@name.deleter
def name(self):
del self. name

p = Person("Alice")

print(p.name) # Alice

del p.name

print(p.name) # AttributeError: 'Person' object has no attril

Read-Only Properties

If you want an attribute to be read-only, define only the @property decorator (the
getter) and omit the @name.setter method. Attempting to set the attribute will

then raise an AttributeError .

class Circle:
def init (self, radius):
self. radius = radius

@property
def radius(self):
return self._radius

@property

def area(self): # Read-only computed property
return 3.1416 * self._radius * self._radius

c = Circle(5)
print(c.radius) # 5
print(c.area) # 78.54

c.radius = 10 # Raises AttributeError: can't set attribute
c.area = 20 # Raises AttributeError: can't set attribute

Recap

« Getters and Setters provide controlled access to an object’s attributes,
promoting encapsulation and data validation.

« The @property decorator offers a cleaner and more Pythonic way to
implement getters and setters, allowing attribute-like access.

* You can create read-only properties by defining only a getter (using
@property without a corresponding @<attribute>.setter).

« Using @property , you can dynamically compute values (like the area in the

Circle example) while maintaining an attribute-like syntax.

Static and Class Methods in Python

Introduction

In Python, methods within a class can be of three main types:

« Instance Methods: These are the most common type of method. They operate
on instances of the class (objects) and have access to the instance’s data
through the self parameter.

* Class Methods: These methods are bound to the class itself, not to any
particular instance. They have access to class-level attributes and can be used
to modify the class state. They receive the class itself (conventionally named

cls) as the first argument.

» Static Methods: These methods are associated with the class, but they don't
have access to either the instance (self) or the class (cls). They are
essentially regular functions that are logically grouped within a class for

organizational purposes.

Instance Methods (Default Behavior)

Instance methods are the default type of method in Python classes. They require
an instance of the class to be called, and they automatically receive the instance as

the first argument (self).

class Dog:
def init (self, name):
self.name = name # Instance attribute

def speak(self):
return f"{self.name} says Woof!"

dog = Dog("Buddy")
print(dog.speak()) # Buddy says Woof!

Class Methods (@classmethod)

A class method is marked with the @classmethod decorator. It takes the class itself
(cls) as its first parameter, rather than the instance (self). Class methods are

often used for:

» Modifying class attributes: They can change the state of the class, which
affects all instances of the class.
* Factory methods: They can be used as alternative constructors to create

instances of the class in different ways.

class Animal:
species = "Mammal" # Class attribute

@classmethod
def set_species(cls, new_species):
cls.species = new_species # Modifies class attribute

@classmethod
def get_species(cls):
return cls.species

print(Animal.get_species()) # Mammal
Animal.set_species("Reptile")
print(Animal.get_species()) # Reptile

You can also call class methods on instances, but it's less com
a = Animal()
print(a.get_species()) # Reptile

Example: Alternative Constructor

class Person:
def init (self, name, age):
self.name = name
self.age = age

@classmethod
def from_string(cls, data):
name, age = data.split("-")
return cls(name, int(age)) # Creates a new Person instan

p = Person.from_string("Alice-30")
print(p.name, p.age) # Alice 30

In this example, from_string acts as a factory method, providing an alternative

way to create Person objects from a string.

Static Methods (@staticmethod)

Static methods are marked with the @staticmethod decorator. They are similar to

regular functions, except they are defined within the scope of a class.

» They don’t take self or cls as parameters.

« They are useful when a method is logically related to a class but doesn’t need

to access or modify the instance or class state.

« Often used for utility functions that are related to the class

class MathUtils:
@staticmethod
def add(a, b):
return a + b

print(MathUtils.add(3, 5)) # 8

#Can also be called on an instance
m = MathUtils()
print(m.add(4,5)) # 9

When to Use Static Methods?

» When a method is logically related to a class but doesn’t require access to

instance-specific or class-specific data.

« For utility functions that perform operations related to the class’s purpose
(e.g., mathematical calculations, string formatting, validation checks).

Key Differences Between Method Types

. . Can Access .
Method Requires Requires Can Modify
Instance .
Type self ? cls ? . Class Attributes?
Attributes?

Instance Yes
Yes X No Yes
Method v v (indirectly)

. . Can Access .
Method Requires Requires Can Modify
Instance .
Type self ? cls ? . Class Attributes?
Attributes?

Class
¥ No Yes X No (directly) Yes
Method
Static X N X N X N X N
o) o) o o)
Method
Recap

« Instance methods are the most common type and operate on individual
objects (self).

« Class methods operate on the class itself (c1s) and are often used for factory
methods or modifying class-level attributes.

« Static methods are utility functions within a class that don’t depend on the

instance or class state. They're like regular functions that are logically grouped
with a class.

Magic (Dunder) Methods in Python

Introduction

Magic methods, also called dunder (double underscore) methods, are special
methods in Python that have double underscores at the beginning and end of their
names (e.g., __init_ , _ str__, _ add__). These methods allow you to define
how your objects interact with built-in Python operators, functions, and language
constructs. They provide a way to implement operator overloading and customize

the behavior of your classes in a Pythonic way.
They are used to:

» Customize object creation and initialization (__init_ , _ new__).

 Enable operator overloading (e.g., +, -, *, ==, <, >).

« Provide string representations of objects (__str__, _ repr__).
« Control attribute access (__getattr_ , _ setattr_ , _ delattr_).

« Make objects callable (__call_).

« Implement container-like behavior (__len_ , _ getitem__ , _ setitem__,
__delitem__, _ contains__).
« Support with context managers (__enter__, __ exit_)

Common Magic Methods
1. __init__ - Object Initialization

The __init__ method is the constructor. It's called automatically when a new

instance of a class is created. It's used to initialize the object’s attributes.

class Person:
def init (self, name, age):
self.name = name
self.age = age

p = Person("Alice", 30)
print(p.name, p.age) # Alice 30

2. _str__ and __repr__ - String Representation

e _ str__ :This method should return a human-readable, informal string

representation of the object. It's used by the str() function and by
print() .

« _ repr__ : This method should return an unambiguous, official string
representation of the object. Ideally, this string should be a valid Python
expression that could be used to recreate the object. It's used by the repr()
function and in the interactive interpreter when you just type the object’s
name and press Enter.

class Person:
def init (self, name, age):
self.name = name
self.age = age

def _ str_ (self):
return f"Person({self.name}, {self.age})" # User-friendl

def _ repr__ (self):
return f"Person(name='{self.name}', age={self.age})" # U

p = Person("Alice", 30)

print(str(p)) # Person(Alice, 30)

print(repr(p)) # Person(name='Alice', age=30)

print(p) # Person(Alice, 30) # print() uses _ str_ if

If __str__ is not defined, Python will use __repr__ as a fallback for str() and

print() . It's good practice to define at least __repr__ for every class you create.

3. __len__ - Define Behavior for 1len()

This method allows objects of your class to work with the built-in len() function.

It should return the “length” of the object (however you define that).

class Book:
def init (self, title, pages):
self.title = title
self.pages = pages

def len_ (self):
return self.pages

b = Book("Python 101", 250)
print(len(b)) # 250

4. _add__, _sub__, _mul__, etc. — Operator Overloading

These methods allow you to define how your objects behave with standard
arithmetic and comparison operators.

class Vector:
def init (self, x, y):

self.x X

y

self.y

def add (self, other):
return Vector(self.x + other.x, self.y + other.y)

def sub_(self, other):
return Vector(self.x - other.x, self.y - other.y)

def mul (self, scalar):
return Vector(self.x * scalar, self.y * scalar)

def _ str_ (self):
return f"Vector({self.x}, {self.y})"

vl = Vector(2, 3)
v2 = Vector(4, 5)
v3 = vl + v2 # Calls _add

print(v3) # Vector(6, 8)
v4d = v3 - vl

print(v4) # Vector(4, 5)
v5 = vl * 5

print(v5) # Vector(10, 15)

Other common operator overloading methods include:

e _eq__ (==
« _ne__ (=)
e 1t (<)
- _gt_ (>)

. le (<=)

©_ge_ (>9)

e _ truediv__ (/)
e _floordiv__ (//)
e mod__ (%)

© _pow__ (*%)

Recap

Magic (dunder) methods are a powerful feature of Python that allows you to:

« Customize how your objects interact with built-in operators and functions.
» Make your code more intuitive and readable by using familiar Python syntax.

* Implement operator overloading, container-like behavior, and other advanced

features.

« Define string representation.

Exception Handling and Custom Errors in Python

Introduction

Exceptions are events that occur during the execution of a program that disrupt
the normal flow of instructions. Python provides a robust mechanism for handling
exceptions using try-except blocks. This allows your program to gracefully

recover from errors or unexpected situations, preventing crashes and providing
informative error messages. You can also define your own custom exceptions to

represent specific error conditions in your application.

Basic Exception Handling

The try-except block is the fundamental construct for handling exceptions:

* The try block contains the code that might raise an exception.

« The except block contains the code that will be executed if a specific

exception occurs within the try block.

try:

X =10 / @ # This will raise a ZeroDivisionError
except ZeroDivisionError:

print("Cannot divide by zero!")

Output:

Cannot divide by zero!

Handling Multiple Exceptions

You can handle multiple types of exceptions using multiple except blocks or by

specifying a tuple of exception types in a single except block.

try:
num = int(input("Enter a number: "))
result = 10 / num
except ZeroDivisionError:
print("You can't divide by zero!")
except ValueError:
print("Invalid input! Please enter a number.")

Alternative using a tuple:

try:
num = int(input("Enter a number: "))
result = 10 / num

except (ZeroDivisionError, ValueError) as e:
print(f"An error occurred: {e}")

Using else and finally

« else : The else block is optional and is executed only if no exception occurs
within the try block. It's useful for code that should run only when the try

block succeeds.

« finally : The finally block is also optional and is always executed,

regardless of whether an exception occurred or not. It's typically used for
cleanup operations, such as closing files or releasing resources.

try:
file = open("test.txt", "r")
content = file.read()
except FileNotFoundError:
print("File not found!")
else:
print("File read successfully.")
print(f"File contents:\n{content}")
finally:

file.close() # Ensures the file is closed no matter what

Raising Exceptions (raise)

You can manually raise exceptions using the raise keyword. This is useful for

signaling error conditions in your own code.

def check_age(age):
if age < 18:
raise ValueError("Age must be 18 or older!")
return "Access granted."

try:
print(check_age(20)) # Access granted.
print(check_age(16)) # Raises ValueError
except ValueError as e:
print(f"Error: {e}")

Custom Exceptions

Python allows you to define your own custom exception classes by creating a new
class that inherits (directly or indirectly) from the built-in Exception class (or one

of its subclasses). This makes your error handling more specific and informative.

class InvalidAgeError(Exception):

Custom exception for invalid age.
def __init__ (self, message="Age must be 18 or older!"):
self.message = message

super().__init__ (self.message)

def verify age(age):
if age < 18:
raise InvalidAgeError() # Raise your custom exception
return "Welcome!"

try:
print(verify_age(16))
except InvalidAgeError as e:
print(f"Error: {e}")

By defining custom exceptions, you can:

« Create a hierarchy of exceptions that reflect the specific error conditions in

your application.
« Provide more informative error messages tailored to your application’s needs.

» Make it easier for other parts of your code (or other developers) to handle

specific errors appropriately.

Conclusion

« try-except blocks are essential for handling errors and preventing program
crashes.
 Multiple except blocks or a tuple of exception types can be used to handle

different kinds of errors.

« The else block executes only if no exception occurs in the try block.
« The finally block always executes, making it suitable for cleanup tasks.
* The raise keyword allows you to manually trigger exceptions.

« Custom exceptions (subclasses of Exception) provide a way to represent

application-specific errors and improve error handling clarity.

Map, Filter, and Reduce

Introduction

map , filter ,and reduce are higher-order functions in Python (and many other

programming languages) that operate on iterables (lists, tuples, etc.). They provide
a concise and functional way to perform common operations on sequences of data
without using explicit loops. While they were more central to Python's functional
programming style in earlier versions, list comprehensions and generator
expressions often provide a more readable alternative in modern Python.

Map
The map() function applies a given function to each item of an iterable and
returns an iterator that yields the results.

Syntax: map(function, iterable, ...)

« function : The function to apply to each item.
« iterable : The iterable (e.g. list, tuple) whose items will be processed.

« ... :map can take multiple iterables. The function must take the same

number of arguments

numbers = [1, 2, 3, 4, 5]

Square each number using map
squared_numbers = map(lambda x: x**2, numbers)
print(list(squared_numbers)) # Output: [1, 4, 9, 16, 25]

#Example with multiple iterables

numbersl = [1, 2, 3]

numbers2 = [4, 5, 6]

summed = map(lambda x, y: X + y, numbersl, numbers2)
print(list(summed)) # Output: [5, 7, 9]

Equivalent list comprehension:
squared_numbers_1lc = [x**2 for x in numbers |
print(squared_numbers_lc) # Output: [1, 4, 9, 16, 25]

Filter

The filter() function constructs an iterator from elements of an iterable for
which a function returns True . In other words, it filters the iterable based on a

condition.
Syntax: filter(function, iterable)

« function : A function that returns True or False for each item.If None is
passed, it defaults to checking if the element is True (truthy value).

« iterable : The iterable to be filtered.

numbers = [1, 2, 3, 4, 5, 6]

Get even numbers using filter
even_numbers = filter(lambda x: x % 2 == @, numbers)
print(list(even_numbers)) # Output: [2, 4, 6]

Equivalent list comprehension:
even_numbers_1lc = [x for x in numbers if x % 2 == 0]
print(even_numbers 1lc) # Output: [2, 4, 6]

Example with None as function

values = [0, 1, [], "hello", "", None, True, False]
truthy_values = filter(None, values)
print(list(truthy_values)) # Output: [1, 'hello', True]

Reduce

The reduce() function applies a function of two arguments cumulatively to the

items of an iterable, from left to right, so as to reduce the iterable to a single value.
reduce is not a built-in function; it must be imported from the functools

module.
Syntax: reduce(function, iterable[, initializer])

« function : A function that takes two arguments.
« iterable : The iterable to be reduced.

« initializer (optional): If provided, it's placed before the items of the

iterable in the calculation and serves as a default when the iterable is empty.

from functools import reduce
numbers = [1, 2, 3, 4, 5]

Calculate the sum of all numbers using reduce
sum_of _numbers = reduce(lambda x, y: x + y, numbers)
print(sum_of_numbers) # Output: 15

Calculate the product of all numbers using reduce
product_of_numbers = reduce(lambda x, y: x * y, numbers)
print(product_of numbers) # Output: 120

#reduce with initializer
empty list sum = reduce(lambda x,y: x+y, [], 0)
print(empty_list sum) # ©

Without the initializer:

empty list sum = reduce(lambda x,y: x+y, []) # raises TypeError

Equivalent using a loop (for sum):
total = ©
for x in numbers:
total += x
print(total) # 15

When to use map, filter, reduce vs. list comprehensions/generator expressions:

« Readability: List comprehensions and generator expressions are often more
readable and easier to understand, especially for simple operations.

« Performance: In many cases, list comprehensions/generator expressions can
be slightly faster than map and filter .

« Complex Operations: reduce can be useful for more complex aggregations

where

« Complex Operations: reduce can be useful for more complex aggregations
where the logic is not easily expressed in a list comprehension. map and
filter may also be preferable when you already have a named function that

you want to apply.

* Functional Programming Style: If you're working in a more functional
programming style, map , filter , and reduce can fit naturally into your

code.

Walrus Operator (:=)

Introduction

The walrus operator (:=), introduced in Python 3.8, is an assignment expression
operator. It allows you to assign a value to a variable within an expression. This can
make your code more concise and, in some cases, more efficient by avoiding
repeated calculations or function calls. The name “walrus operator” comes from the
operator’s resemblance to the eyes and tusks of a walrus.

Use Cases

1. Conditional Expressions: The most common use case is within if
statements, while loops, and list comprehensions, where you need to both

test a condition and use the value that was tested.

Without walrus operator
data = input("Enter a value (or 'quit' to exit): ")

while data != "quit":
print(f"You entered: {data}")
data = input("Enter a value (or 'quit' to exit): ")

With walrus operator
while (data := input("Enter a value (or 'quit' to exit): "))
print(f"You entered: {datal}")

In the “with walrus” example, the input is assigned to data and compared to

“quit” in a single expression.

2. List Comprehensions: You can avoid repeated calculations or function calls

within a list comprehension.

numbers = [1, 2, 3, 4, 5]

Without walrus operator: calculate x * 2 twice
results = [x * 2 for x in numbers if x * 2 > 5|

With walrus operator: calculate x * 2 only once
results = [y for x in numbers if (y := x * 2) > 5]

3. Reading Files: You can read lines from a file and process them within a loop.

Without Walrus
with open("my file.txt", "r") as f:
line = f.readline()
while line:
print(line.strip())
line = f.readline()

With Walrus
with open("my file.txt", "r") as f:
while (line := f.readline()):

print(line.strip())

Considerations

« Readability: While the walrus operator can make code more concise, it can
also make it harder to read if overused. Use it judiciously where it improves
clarity.

* Scope: The variable assigned using := is scoped to the surrounding block
(e.g. the if statement, while loop, or list comprehension).

* Precedence: The walrus operator has lower precedence than most other

operators. Parentheses are often needed to ensure the expression is evaluated
as intended.

Args and Kwargs

Introduction

*args and **kwargs are special syntaxes in Python function definitions that

allow you to pass a variable number of arguments to a function. They are used
when you don’t know in advance how many arguments a function might need to
accept.

« *args : Allows you to pass a variable number of positional arguments.

« **kwargs : Allows you to pass a variable number of keyword arguments.

*args (Positional Arguments)

*args collects any extra positional arguments passed to a function into a tuple.
The name args is just a convention; you could use any valid variable name

preceded by a single asterisk (e.g., *values , *numbers).

def my_function(*args):
print(type(args)) # <class 'tuple'>
for arg in args:
print(arg)

my_function(1l, 2, 3, "hello") # Output: 1 2 3 hello

my_function() # No output (empty tuple)
my_function("a", "b") # Output: a b

In this example, *args collects all positional arguments passed to my_function

into the args tuple.

**kwargs (Keyword Arguments)

**kwargs collects any extra keyword arguments passed to a function into a
dictionary. Again, kwargs is the conventional name, but you could use any valid

variable name preceded by two asterisks (e.g., **data, **options).

def my_function(**kwargs):
print(type(kwargs)) # <class ‘'dict'>
for key, value in kwargs.items():
print(f"{key}: {value}")

my_function(name="Alice", age=30, city="New York")
Output:

name: Alice

age: 30

city: New York

my_function() # No output (empty dictionary)
my_function(a=1, b=2)

Output:
a: 1
b: 2

In this example, **kwargs collects all keyword arguments into the kwargs

dictionary.

Combining *args and **kwargs

You can use both *args and **kwargs in the same function definition. The order
is important: *args must come before **kwargs . You can also include regular

positional and keyword parameters.

def my function(a, b, *args, c=10, **kwargs):
print(f"a: {a}")
print(f"b: {b}")
print(f"args: {args}")
print(f"c: {c}")
print(f"kwargs: {kwargs}")

my function(1, 2, 3, 4, 5, c=20, name="Bob", country="USA")
Output:

a: 1

b: 2

args: (3, 4, 5)

c: 20

kwargs: {'name': 'Bob', 'country': 'USA'}

my_function(1,2)
Output:

a: 1

b: 2

args: ()

c: 10

kwargs: {}

Use Cases

* Flexible Function Design: *args and **kwargs make your functions more
flexible, allowing them to handle a varying number of inputs without needing
to define a specific number of parameters.

* Decorator Implementation: Decorators often use *args and **kwargs to

wrap functions that might have different signatures.
* Function Composition: You can use *args and **kwargs to pass arguments
through multiple layers of function calls.

« Inheritance: Subclasses can accept extra parameters to those defined by
parent classes.

Example showing use in inheritance
class Animal:

def init (self, name):
self.name = name

class Dog(Animal):
def init (self, name, breed, *args, **kwargs):
super().__init__ (name)
self.breed = breed
Process any additional arguments or keyword arguments here
print(f"args: {args}")
print(f"kwargs: {kwargs}")

dogl
dog2

Dog("Buddy", "Golden Retriever")

Dog("Lucy", "Labrador", 1,2,3, color="Black", age = 5)

	Python: Advanced Concepts
	Decorators in Python
	Introduction
	Understanding Decorators
	Basic Example of a Decorator
	Output:

	Using Decorators with Arguments
	Output:

	Chaining Multiple Decorators
	Output:
	Recap

	Getters and Setters in Python
	Introduction
	Using Getters and Setters
	Traditional Approach (Using Methods)
	Using @property (Pythonic Approach)

	Benefits of @property:
	Read-Only Properties
	Recap

	Static and Class Methods in Python
	Introduction
	Instance Methods (Default Behavior)
	Class Methods (@classmethod)
	Example: Alternative Constructor

	Static Methods (@staticmethod)
	When to Use Static Methods?

	Key Differences Between Method Types
	Recap

	Magic (Dunder) Methods in Python
	Introduction
	Common Magic Methods
	1. __init__ – Object Initialization
	2. __str__ and __repr__ – String Representation
	3. __len__ – Define Behavior for len()
	4. __add__, __sub__, __mul__, etc. – Operator Overloading

	Recap

	Exception Handling and Custom Errors in Python
	Introduction
	Basic Exception Handling
	Output:

	Handling Multiple Exceptions
	Using else and finally

	Raising Exceptions (raise)
	Custom Exceptions
	Conclusion

	Map, Filter, and Reduce
	Introduction
	Map
	Filter
	Reduce

	Walrus Operator (:=)
	Introduction
	Use Cases
	Considerations

	Args and Kwargs
	Introduction
	*args (Positional Arguments)
	**kwargs (Keyword Arguments)
	Combining *args and **kwargs
	Use Cases

