
Object-Oriented Programming (OOP) inPythonWe’ll now explore how to organize and structure your Python code using objects,making it more manageable, reusable, and easier to understand.1. What is OOP Anyway?Imagine you’re building with LEGOs. Instead of just having a pile of individualbricks (like in procedural programming), OOP lets you create pre-assembled units –like a car, a house, or a robot. These units have specific parts (data) and things theycan do (actions).That’s what OOP is all about. It’s a way of programming that focuses on creating“objects.” An object is like a self-contained unit that bundles together:Data (Attributes): Information about the object. For a car, this might be itscolor, model, and speed.Actions (Methods): Things the object can do. A car can accelerate, brake, andturn.Why Bother with OOP?OOP offers several advantages:Organization: Your code becomes more structured and easier to navigate.Large projects become much more manageable.Reusability: You can use the same object “blueprints” (classes) multiple times,saving you from writing the same code over and over.Easier Debugging: When something goes wrong, it’s often easier to pinpointthe problem within a specific, self-contained object.Real-World Modeling: OOP allows you to represent real-world things andtheir relationships in a natural way.• • • • • •

The Four Pillars of OOPOOP is built on four fundamental principles:Abstraction: Think of driving a car. You use the steering wheel, pedals, andgearshift, but you don’t need to know the complex engineering under thehood. Abstraction means hiding complex details and showing only theessential information to the user.Encapsulation: This is like putting all the car’s engine parts inside a protectivecasing. Encapsulation bundles data (attributes) and the methods that operateon that data within a class. This protects the data from being accidentallychanged or misused from outside the object. It controls access.Inheritance: Imagine creating a “SportsCar” class. Instead of starting fromscratch, you can build it upon an existing “Car” class. The “SportsCar” inheritsall the features of a “Car” (like wheels and an engine) and adds its own specialfeatures (like a spoiler). This promotes code reuse and reduces redundancy.Polymorphism: “Poly” means many, and “morph” means forms. This meansobjects of different classes can respond to the same “message” (method call)in their own specific way. For example, both a “Dog” and a “Cat” might have a make_sound() method. The dog will bark, and the cat will meow – samemethod name, different behavior.2. Classes and Objects: The Blueprint and the BuildingClass: Think of a class as a blueprint or a template. It defines what an object will be like – what data it will hold and what actions it can perform. It doesn’tcreate the object itself, just the instructions for creating it. It’s like anarchitectural plan for a house.Object (Instance): An object is a specific instance created from the classblueprint. If “Car” is the class, then your red Honda Civic is an object (aninstance) of the “Car” class. Each object has its own unique set of data. It’s likethe actual house built from the architectural plan.Let’s see this in Python:1. 2. 3. 4. • • class Dog: # We define a class called "Dog" species = "Canis familiaris" # A class attribute (shared by all Dogs)

self Explained: Inside a class, self is like saying “this particular object.” It’sa way for the object to refer to itself. It’s always the first parameter in amethod definition, but Python handles it automatically when you call themethod. You don’t type self when calling the method; Python inserts it foryou.Class vs. Instance Attributes:Class Attributes: These are shared by all objects of the class. Like species in our Dog class. All dogs belong to the same species. They aredefined outside of any method, directly within the class.Instance Attributes: These are specific to each individual object. nameand breed are instance attributes. Each dog has its own name and breed.They are usually defined within the __init__ method.def __init__(self, name, breed): # The constructor (explained later) self.name = name # An instance attribute to store the dog's name self.breed = breed # An instance attribute to store the dog's breeddef bark(self): # A method (an action the dog can do)print(f"{self.name} says Woof!")# Now, let's create some Dog objects:my_dog = Dog("Buddy", "Golden Retriever") # Creating an object called my_doganother_dog = Dog("Lucy", "Labrador") # Creating another object# We can access their attributes:print(my_dog.name) # Output: Buddyprint(another_dog.breed) # Output: Labrador# And make them perform actions:my_dog.bark() # Output: Buddy says Woof!print(Dog.species) # Output: Canis familiaris• • • •

3. The Constructor: Setting Things Up (__init__)The __init__ method is special. It’s called the constructor. It’s automatically runwhenever you create a new object from a class.What’s it for? The constructor’s job is to initialize the object’s attributes – to givethem their starting values. It sets up the initial state of the object.You can also set default values for parameters in the constructor, making themoptional when creating an object:class Dog:def __init__(self, name, breed): # The constructor self.name = name # Setting the name attribute self.breed = breed # Setting the breed attribute# When we do this:my_dog = Dog("Fido", "Poodle") # The __init__ method is automatically called# It's like we're saying:# 1. Create a new Dog object.# 2. Run the __init__ method on this new object:# - Set my_dog.name to "Fido"# - Set my_dog.breed to "Poodle"class Dog:def __init__(self, name="Unknown", breed="Mixed"): self.name = name self.breed = breeddog1 = Dog() # name will be "Unknown", breed will be "Mixed"dog2 = Dog("Rex") # name will be "Rex", breed will be "Mixed"dog3 = Dog("Bella", "Labrador") # name will be "Bella", breed will be "Labrador"

4. Inheritance: Building Upon Existing ClassesInheritance is like a family tree. A child class (or subclass) inherits traits (attributesand methods) from its parent class (or superclass). This allows you to create newclasses that are specialized versions of existing classes, without rewriting all thecode.super() : Inside a child class, super() lets you call methods from the parentclass. This is useful when you want to extend the parent’s behavior instead ofcompletely replacing it. It’s especially important when initializing the parentclass’s part of a child object.class Animal: # Parent class (superclass)def __init__(self, name): self.name = namedef speak(self):print("Generic animal sound")class Dog(Animal): # Dog inherits from Animal (Dog is a subclass of Animal)def speak(self): # We *override* the speak method (more on this later)print("Woof!")class Cat(Animal): # Cat also inherits from Animaldef speak(self):print("Meow!")# Create objects:my_dog = Dog("Rover")my_cat = Cat("Fluffy")# They both have a 'name' attribute (inherited from Animal):print(my_dog.name) # Output: Roverprint(my_cat.name) # Output: Fluffy# They both have a 'speak' method, but it behaves differently:my_dog.speak() # Output: Woof!my_cat.speak() # Output: Meow!•

5. Polymorphism: One Name, Many FormsPolymorphism, as we saw with the speak() method in the inheritance example,means that objects of different classes can respond to the same method call intheir own specific way. This allows you to write code that can work with objects ofdifferent types without needing to know their exact class.6. Method Overriding: Customizing InheritedBehaviorMethod overriding is how polymorphism is achieved in inheritance. When a childclass defines a method with the same name as a method in its parent class, thechild’s version overrides the parent’s version for objects of the child class. This allowsspecialized behavior in subclasses. The parent class’s method is still available (using super()), but when you call the method on a child class object, the child’s versionis executed.7. Operator Overloading: Making Operators Workwith Your ObjectsPython lets you define how standard operators (like + , - , ==) behave whenused with objects of your own classes. This is done using special methods called“magic methods” (or “dunder methods” because they have double underscoresbefore and after the name).# Calling Parent Constructor with super()class Bird(Animal):def __init__(self, name, wingspan):super().__init__(name) # Call Animal's __init__ to set the name self.wingspan = wingspan # Add a Bird-specific attributemy_bird = Bird("Tweety", 10)print(my_bird.name) # Output: Tweety (set by Animal's constructor)print(my_bird.wingspan) # Output: 10 (set by Bird's constructor)

Other useful magic methods: (You don’t need to memorize them all, but be awarethey exist!)__sub__ (-), __mul__ (*), __truediv__ (/), __eq__ (==), __ne__(!=), __lt__ (<), __gt__ (>), __len__ (len()), __getitem__ , __setitem__ , __delitem__ (for list/dictionary-like behavior – allowing youto use [] with your objects).8. Getters and Setters: Controlling Access toAttributesGetters and setters are methods that you create to control how attributes of yourclass are accessed and modified. They are a key part of the principle of encapsulation. Instead of directly accessing an attribute (like class Point:def __init__(self, x, y): self.x = x self.y = ydef __add__(self, other): # Overloading the + operator# 'other' refers to the object on the *right* side of the +return Point(self.x + other.x, self.y + other.y)def __str__(self): # String representation (for print() and str())return f"({self.x}, {self.y})"def __eq__(self, other): # Overloading == operatorreturn self.x == other.x and self.y == other.yp1 = Point(1, 2)p2 = Point(3, 4)p3 = p1 + p2 # This now works! It calls p1.__add__(p2)print(p3) # Output: (4, 6) (This uses the __str__ method)print(p1 == p2) # Output: False (This uses the __eq__ method)•

my_object.attribute), you use methods to get and set its value. This might seemlike extra work, but it provides significant advantages.Why use them?Validation: You can add checks within the setter to make sure the attribute isset to a valid value. For example, you could prevent an age from beingnegative.Read-Only Attributes: You can create a getter without a setter, making theattribute effectively read-only from outside the class. This protects theattribute from being changed accidentally.Side Effects: You can perform other actions when an attribute is accessed ormodified. For instance, you could update a display or log a change whenever avalue is set.Maintainability and Flexibility: If you decide to change how an attribute isstored internally (maybe you switch from storing degrees Celsius toFahrenheit), you only need to update the getter and setter methods. You don’tneed to change every other part of your code that uses the attribute. Thismakes your code much easier to maintain and modify in the future.• • • • class Person:def __init__(self, name, age): self.name = name self._age = age # Convention: _age indicates it's intended to be "private"def get_age(self): # Getter for agereturn self._agedef set_age(self, new_age): # Setter for ageif new_age >= 0 and new_age <= 150: # Validation self._age = new_ageelse:print("Invalid age!")person = Person("Alice", 30)print(person.get_age()) # Output: 30person.set_age(35)print(person.get_age()) # Output: 35

The Pythonic Way: @property DecoratorPython offers a more elegant and concise way to define getters and setters usingthe @property decorator. This is the preferred way to implement them in modernPython.With @property , accessing and setting the age attribute looks like you’reworking directly with a regular attribute, but you’re actually using the getter andsetter methods behind the scenes. This combines the convenience of direct accesswith the control and protection of encapsulation.Private Variables (and the _ convention):person.set_age(-5) # Output: Invalid age!print(person.get_age()) # Output: 35 (age wasn't changed)class Person:def __init__(self, name, age): self.name = name self._age = age # Convention: _age for "private" attributes@property # This makes 'age' a property (the getter)def age(self):return self._age@age.setter # This defines the setter for the 'age' propertydef age(self, new_age):if new_age >= 0 and new_age <= 150: self._age = new_ageelse:print("Invalid age!")person = Person("Bob", 40)print(person.age) # Output: 40 (Looks like direct attribute access, but calls the getter)person.age = 45 # (Calls the setter – looks like attribute assignment)print(person.age)person.age = -22 #Output: Invalid age!

It’s important to understand that Python does not have truly private attributes inthe same way that languages like Java or C++ do. There’s no keyword thatcompletely prevents access to an attribute from outside the class.Instead, Python uses a convention: An attribute name starting with a singleunderscore (_) signals to other programmers that this attribute is intended for internal use within the class. It’s a strong suggestion: “Don’t access this directlyfrom outside the class; use the provided getters and setters instead.” It’s like a“Please Do Not Touch” sign.While you can still access obj._internal_value directly, doing so is consideredbad practice and can lead to problems if the internal implementation of the classchanges. Always respect the underscore convention! It’s about good coding styleand collaboration.class MyClass:def __init__(self): self._internal_value = 0 # Convention: _ means "private"def get_value(self):return self._internal_valueobj = MyClass()# print(obj._internal_value) # This *works*, but it's against conventionprint(obj.get_value()) # This is the preferred way

	Object-Oriented Programming (OOP) in Python
	1. What is OOP Anyway?
	2. Classes and Objects: The Blueprint and the Building
	3. The Constructor: Setting Things Up (__init__)
	4. Inheritance: Building Upon Existing Classes
	5. Polymorphism: One Name, Many Forms
	6. Method Overriding: Customizing Inherited Behavior
	7. Operator Overloading: Making Operators Work with Your Objects
	8. Getters and Setters: Controlling Access to Attributes

