Data Structures in Python

Python provides powerful built-in data structures to store and manipulate

collections of data efficiently.

1. Lists and List Methods

Lists are ordered, mutable (changeable) collections of items.

Creating a List:

numbers = [1, 2, 3, 4, 5]
mixed = [10, "hello", 3.14]

Common List Methods:
my list = [1, 2, 3]
my list.append(4) # [1, 2, 3, 4]

my list.insert(1, 99) # [1, 99, 2, 3, 4]
my list.remove(2) # [1, 99, 3, 4]

my list.pop() # Removes last element -> [1, 99, 3]
my list.reverse() # [3, 99, 1]
my list.sort() # [1, 3, 99]

List Comprehensions (Efficient List Creation)

squared = [x**2 for x in range(5) |
print(squared) # Output: [0, 1, 4, 9, 16]

2. Tuples and Operations on Tuples

Tuples are ordered but immutable collections (cannot be changed after creation).

Creating a Tuple:

my tuple = (10, 20, 30)
single_element = (5,) # Tuple with one element (comma required)

Accessing Tuple Elements:
print(my_tuple[1]) # Output: 20
Tuple Unpacking:
a, b, c = my_tuple

print(a, b, c) # Output: 10 20 30

Common Tuple Methods:

Method Description Example Output
Returns the number of
: : (1, 2, 2,
count(x) times x appears in 2
3).count(2)
the tuple
Returns the index of
, (10, 20,
index(x) the first occurrence of 1

30).index(20)
X

my tuple = (1, 2, 2, 3, 4)
print(my_tuple.count(2)) # Output: 2

print(my_tuple.index(3)) # Output: 3

Why Use Tuples?

« Faster than lists (since they are immutable)
* Used as dictionary keys (since they are hashable)

» Safe from unintended modifications

3. Sets and Set Methods

Sets are unordered, unique collections (no duplicates).

Creating a Set:

fruits = {"apple", "banana", "cherry"}

Key Set Methods:
my set = {1, 2, 3, 4}
my_set.add(5) # {1, 2, 3, 4, 5}
my_set.remove(2) # {1, 3, 4, 5}

my_set.discard(10) # No error if element not found
my_set.pop() # Removes random element

Set Operations:

a =4{1, 2, 3}
b ={3, 4, 5}

print(a.union(b)) # {1, 2, 3, 4, 5}

print(a.intersection(b)) # {3}
print(a.difference(b)) # {1, 2}

Use Case: Sets are great for eliminating duplicate values.

4. Dictionaries and Dictionary Methods

Dictionaries store key-value pairs and allow fast lookups.

Creating a Dictionary:

student = {"name": "Alice", "age": 21, "grade": "A"}

Accessing & Modifying Values:

print(student["name"]) # Output: Alice
student| "age" | = 22 # Updating value
student["city"] = "New York" # Adding new key-value pair

Common Dictionary Methods:

print(student.keys()) # dict_keys(['name', 'age', 'grade', 'ci
print(student.values()) # dict values(['Alice', 22, 'A', 'New Yo
print(student.items()) # dict_items([('name', 'Alice'), ('age',

student.pop("age") # Removes "age" key
student.clear() # Empties dictionary

Dictionary Comprehensions:

squares = {x: x**2 for x in range(5)}
print(squares) # {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

5. When to Use Each Data Structure?

Data Structure Features Best For
List Ordered, Mutable Storing sequences, dynamic data

Tuple Ordered, Immutable Fixed collections, dictionary keys

Data Structure Features Best For
Set Unordered, Unique Removing duplicates, set operations

Dictionary Key-Value Pairs Fast lookups, structured data

	Data Structures in Python
	1. Lists and List Methods
	Creating a List:
	Common List Methods:
	List Comprehensions (Efficient List Creation)

	2. Tuples and Operations on Tuples
	Creating a Tuple:
	Accessing Tuple Elements:
	Tuple Unpacking:
	Common Tuple Methods:
	Why Use Tuples?

	3. Sets and Set Methods
	Creating a Set:
	Key Set Methods:
	Set Operations:

	4. Dictionaries and Dictionary Methods
	Creating a Dictionary:
	Accessing & Modifying Values:
	Common Dictionary Methods:
	Dictionary Comprehensions:

	5. When to Use Each Data Structure?

